Weakly-coordinating anions stabilise the unprecedented monovalent and divalent η -benzene nickel cations $[(\eta - C_5H_5)Ni(\eta - C_6H_6)Ni(\eta - C_5H_5)]^{2+}$ and $[Ni(\eta - C_6H_6)_2]^{2+}$

José L. Priego, Linda H. Doerrer, Leigh H. Rees and Malcolm. L. H. Green*

Inorganic Chemistry Laboratory, South Parks Road, Oxford, UK OX1 3QR. E-mail: malcolm.green@chem.ox.ac.uk

Received (in Cambridge, UK) 9th March 2000, Accepted 15th March 2000

Nickelocene in benzene reacts with the Brønsted acid H₂O-B(C₆F₅)₃ to give the salt $[(\eta$ -C₅H₅)Ni(\eta-C₆H₆)Ni(η -C₅H₅)][B₃(μ -O)₃(C₆F₅)₅] which is the first example of a triple-decker nickel sandwich with a bridging η -benzene ligand; the borate anion is also unprecedented; treatment of Ni(η -C₅H₅)₂ with Brookhart's acid [H(OEt₂)₂][B(3,5-(CF₃)₂C₆H₃)₄] in benzene gives the paramagnetic bis(η -benzene)nickel derivative {[Ni(η -C₆H₆)₂][B(3,5-(CF₃)₂C₆H₃)₄]₂·Ni(η -C₅H₅)₂} in which nickelocene is present as a molecule of crystallisation.

Large and very weakly coordinating anions $[BR_4]^ [R=3,5-(CF_3)_2C_6H_3, C_6F_5]$ have recently attracted interest owing to their ability to stabilise highly electrophilic metal cations.¹ The strong Lewis acid B(C₆F₅)₃, is currently of interest as a methyl abstracting agent and activator of early transition metal Ziegler–Natta polymerisation systems.² Recently the mono-aquo adduct H₂O–B(C₆F₅)₃ was reported, and the solution behaviour as a Brønsted acid was described.^{3,4}

Here, we report reaction between nickelocene and the Brønsted acids $H_2O-B(C_6F_5)_3$ or $[H(OEt_2)_2][B(3,5-(CF_3)_2C_6H_3)_4]$ (Brookhart's acid) which give unexpected new chemistry.

Treatment of nickelocene with Brookhart's acid $[H(OEt_2)_2][B(3,5-(CF_3)_2C_6H_3)_4]$ in toluene gives green–blue crystals of the Ni(III) compound $[Ni(\eta-C_5H_5)_2][B(3,5-(CF_3)_2C_6H_3)_4]$ 1[†]. The nickelocenium cation has been isolated previously as the BF_4^- salt,⁵ but no crystal structure was reported. The cation $[Ni(\eta-C_5Me_5)_2]^+$ has been structurally characterised as C_{60}^- and $[HTCNQF_4]^-$ salts.⁶ The crystal structure of **1** has been determined and the ORTEP of $[Ni(\eta-C_5H_5)_2]^+$ (Fig. 1) shows eclipsed cyclopentadienyl rings as observed in $[Ni(\eta-C_5H_5)_2]$.⁷ The average Ni–C distance of 2.075 Å is slightly shorter than in $[Ni(\eta-C_5H_5)_2]$ (2.178 Å). The

magnetic moment of **1** at room temperature is 1.69 $\mu_{\rm B}$ and corresponds to one unpaired electron, consistent⁸ with the ground state configuration $\delta^4 \sigma^2 \pi^1$.

Treatment of nickelocene with H₂O-B(C₆F₅)₃ in CH₂Cl₂benzene, gave brown crystals of the triple-decker sandwich compound $[(\eta - C_5H_5)Ni(\eta - C_6H_6)Ni(\eta - C_5H_5)][B_3(\mu - O)_3 (C_6F_5)_5$] 2. In contrast, the reaction between nickelocene and the Brønsted acid HBF₄·Et₂O gave the cation $[Cp_3Ni_2]^{+,9}$ We envisage the cation $[(\eta$ -C₅H₅)Ni(η -C₆H₆)Ni(η -C₅H₅)]²⁺ is formed by the addition of two intermediate $[Ni(\eta-C_5H_5)]^+$ fragments to a benzene molecule. Each nickel centre is formally equivalent to the 18-electron centres in $[Ni(\eta-C_5H_5)(\eta^3$ allyl)].¹⁰ The crystal structure of **2** (Fig. 2) shows the rings are eclipsed with an average Ni-C_{Cp} distance of 2.121 Å, and the C-Ĉ-C angles lie between 106.6(5) and $109.2(4)^{\circ}$; the corresponding Ni–C_{benzene} distance is 2.168 Å, with the C–C–C angles between 118.5(6) and 121.8(5)°. This compound is the first n-benzene-nickel(II) sandwich compound to be structurally characterised. The only other n-benzene-nickel compound is the Ni(0) phosphine compound, $[Ni(\eta-C_6H_6)(But_2PCH_2-$ PBut₂)].¹¹ Nickel(II) compounds with one η-toluene or ηmesitylene ligand have been structurally characterised.¹²

The counter ion in **2** is a new dianion. The six-membered B_3O_3 ring is surrounded by five C_6F_5 groups, giving one neutral, three-coordinate boron, B(1), and two anionic tetrahedral boron centres, B(2) and B(3). There are only two non-solvent moieties present in the crystal structure, and to maintain electrostatic balance we assign a charge of -2 to the anion. The average B–O bond distance is 1.448 Å and the average B–O–B angle is 120.9°. The anion likely results from acidic decomposition and aryl group loss in H_2O –B(C_6F_5)₃.

Treatment of nickelocene with Brookhart's acid in benzene gives red-brown crystals of **3** and the crystal structure of **3** shows the presence of Ni(η -C₅H₅)₂, Ni(η -C₆H₆)₂ and two

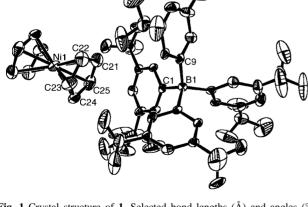
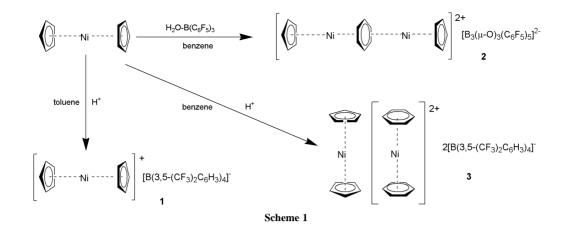



Fig. 1 Crystal structure of 1. Selected bond lengths (Å) and angles (°): Cp_{cent} -Ni(1) 1.70, B(1)–C(1) 1.631(8), B(1)–C(9) 1.636(8); C(23)–C(22)–C(21) 109.3(8), C(22)–C(21)–C(25) 105.3(7), C(23)–C(24)–C(25) 106.6(7), C(22)–C(23)–C(24) 108.4(7), C(24)–C(25)–C(21) 109.1(7).

Fig. 2 Crystal structure of **2**. Selected bond lengths (Å) and angles (°): Cp_{cent}-Ni(1) 1.744, benzene_{cent}-Ni(1) 1.795, B(1)–O(1) 1.349(4), B(2)–O(2) 1.438(4), B(3)–O(3) 1.549(4); O(1)–B(1)–O(2) 123.8(3), O(2)–B(2)–O(3) 108.0(2), O(1)–B(3)–O(3) 107.6(2).

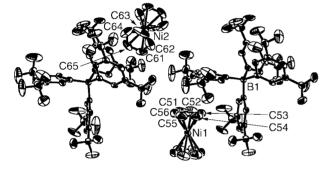


Fig. 3 Crystal structure of 3. Selected bond lengths (Å) and angles (°): benzene_{cent}-Ni(1) 1.713, Cp_{cent}-Ni(2) 1.710, C(51)-C(52)-C(53) 124.2(15), C(56)-C(55)-C(54) 113.8(9), C(52)-C(51)-C(56) 126.2(16), C(63)-C(62)-C(61) 109.7(7), C(61)-C(65)-C(64) 107.0(7).

 $[B(3,5-(CF_3)_2C_6H_3)_4]^-$ anions. The room temperature magnetic moment of 3 is 4.26 $\mu_{\rm B}$, corresponding to four unpaired electrons. These data are consistent with the presence in the crystal of neutral Ni(η -C₅H₅)₂ and dicationic [Ni(η -C₆H₆)₂]²⁺; therefore we formulate this compound as {[Ni(η- $C_6H_6)_2][B(3,5-(CF_3)_2C_6H_3)_4]_2 \cdot Ni(\eta-C_5H_5)_2]$, and the nickelocene is present as a molecule of crystallisation (Fig. 3). The average $\hat{N}i$ -C distance in the dication $[Ni(\eta-C_6H_6)_2]^{2+}$ is 2.079 Å and the C–C–C angles are between 113.8(9) and 126.2(16)°. Bis(n-hexamethylbenzene)nickel(II) has been reported,13 but not structurally characterised.

The new and often surprising reactions are summarised in Scheme 1.

J. L. P. thanks the Spanish Goverment for financial support. L. H. D thanks St. John's College Oxford for a Junior Research Fellowship.

Notes and references

† Crystal data: 1: C₄₂H₂₂BF₂₄Ni, $M_w = 1052.12$, monoclinic, space group C2/c, a = 15.792(3), b = 12.679(3), c = 21.434(4) Å, $\beta = 91.52(3)$, U = 12.679(3), c = 21.434(4) Å, $\beta = 12.679(3)$, U = 12.679(3), b = 12.6794290.1(15) Å³, Z = 4, μ (Mo-K α) = 0.588 mm⁻¹. T = 150 K, 2802 independent reflections were collected ($R_{int} = 0.0000$); R = 0.0948 and R_w

= 0.1973. The fluorine atoms of the CF_3 groups were found to be disordered and modelled as occupying staggerred positions (F121-F123 s.o.f. 84%; F151-F153 s.o.f. 87% and F41-F43 s.o.f. 84%).

2·CH₂Cl₂: C₄₇H₁₈B₃Cl₂F₂₅Ni₂O₃, $M_w = 1326.37$, triclinic, space group $P\bar{1}, a = 11.873(7), b = 13.526(8), c = 16.304(8)$ Å, $\alpha = 73.658(6), \beta = 10.304(8)$ 75.969(6), $\gamma = 71.607(6)^\circ$, U = 2350.0(5) Å³, Z = 2, μ (Mo-K α) = 1.06 mm⁻¹. T = 150 K; 8130 independent reflections were collected ($R_{int} =$ 0.03); R = 0.0462 and $R_w = 0.0572$.

3: C₄₃H₂₃BF₂₄Ni, $M_w = 1065.13$, triclinic, space group $P\overline{1}$, a =12.889(5), b = 13.191(6), c = 14.420(4) Å, $\alpha = 86.902(6)$, $\beta = 90.131(6)$, $\gamma = 61.171(6)^\circ$, U = 2143.55(14) Å³, Z = 2, μ (Mo-K α) = 0.590 mm⁻¹ T = 150 K; 7199 independent reflections were collected ($R_{int} = 0.0000$); R = 0.0797 and $R_{\rm w}$ = 0.2037. The fluorine atoms of the CF₃ groups have been modelled as disordered over two staggerred positions (F171-F173 s.o.f 49%, F341-F343 s.o.f 72% and F472-F473 s.o.f 74%)

CCDC 182/1576. See http://www.rsc.org/suppdata/cc/b0/b001190h/ for crystallographic files in .cif format.

- 1 C. A. Reed, Acc. Chem. Res., 1998, 31, 133.
- M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255.
- 3 A. A. Danopoulos, J. R. Galsworthy, M. L. H. Green, S. Cafferkey, L. H. Doerrer and M. B. Hursthouse, Chem. Commun., 1998, 2529.
- 4 L. H. Doerrer and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1999, 4325.
- 5 H. Werner and B. Ulrich, J. Organomet. Chem., 1977, 141, 339; J. D. Gribble and S. Wherland, Inorg. Chem., 1990, 29, 1130.
- 6 W. C. Wan, X. Liu, G. M. Sweeney and W. E. Broderick, J. Am. Chem. Soc., 1995, 117, 9580; X. Wang, L. M. Liable-Sands, J. L. Manson, A. L. Rheingold and J. S. Miller, Chem. Commun., 1996, 1979.
- P. Seiler and J. D. Dunitz, Acta Crystallogr., Sect. B., 1980, 36, 2255.
- 8 K. D. Warren, Inorg. Chem., 1974, 13, 1317.
- H. Werner and A. Salzer, Synth. Inorg. Met-org. Chem., 1972, 2, 239; A. Salzer and H. Werner, Angew. Chem., Int. Ed. Engl., 1972, 2, 249; E. Dubler, M. Textor, H.-R. Oswald and A. Salzer, Angew. Chem., Int. Ed. Engl., 1974, 13, 135; E. Dubler, M. Textor, H. R. Oswald and G. B Jameson, *Acta Crystallogr., Sect. B.*, 1983, **39**, 607. 10 A. E. Smith, *Inorg. Chem.*, 1972, **11**, 165.
- 11 T. Nickel, R. Goddard, C. Krüger and K. Pörschke, Angew. Chem., Int. Ed. Engl., 1994, 33, 879.
- L. J. Radonovich, K. J. Klabunde, C. B. Behrens, D. P. McCollor and B. B. Anderson, Inorg. Chem., 1980, 19, 1221; L. J. Radonovich, F. J. Koch and T. A. Albright, Inorg. Chem., 1980, 19, 3373.
- 13 H. H. Kinder and E. O. Fischer, J. Organomet. Chem., 1968, 12, P18. A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, SIR92,
- Program for crystal structure solution, J. Appl. Crystallogr., 1993, 26, 343